PERATURAN MENTERI PERHUBUNGAN
NOMOR: KM 21 TAHUN 2008
TENTANG
RENCANA INDKU PELABUHAN KHUSUS MINYAK DAN GAS BUMI
PT. PERTAMINA (PERSERO) BALONGAN
DENGAN RAHMAT TUHAN YANG MAHA ESA
MENTERI PERHUBUNGAN,

Membaca: 1. surat Gubernur Jawa Barat Nomor 050/922/Sarek tanggal 26 Maret 2007 mengenai Rekomendasi Rencana Induk Pelabuhan Khusus PT.Pertamina (Persero);

Menimbang: a. bahwa berdasarkan Pasal 56 Peraturan Pemerintah Nomor 69 Tahun 2001 tentang Kepelabuhanan, diatur bahwa untuk kepentingan pengelolaan pelabuhan khusus, pengelola pelabuhan wajib menyusun rencana induk pelabuhan pada lokasi yang telah ditetapkan;

b. bahwa rencana induk pelabuhan khusus sebagaimana dimaksud dalam huruf a, untuk pelabuhan khusus, Internasional dan Nasional ditetapkan oleh Menteri Perhubungan setelah mendapat rekomendasi dari Gubernur dan Bupati/Walikota;

c. bahwa PT.Pertamina (Persero) telah memiliki legalitas perizinan Pelabuhan Khusus sesuai surat Keputusan Menteri Perhubungan Nomor SK.88/0/1972 tanggal 2 Maret 1972;

d. bahwa berdasarkan pertimbangan sebagaimana tersebut huruf a, huruf b, dan huruf c serta untuk memberikan pedoman bagi pembangunan dan pengembangan Pelabuhan Khusus Minyak dan Gas Bumi PT.Pertamina (Persero) Balongan, perlu menetapkan Peraturan Menteri Perhubungan tentang Rencana Induk Pelabuhan Khusus PT.Pertamina (Persero) Balongan;
Mengingat:

1. Undang-Undang Nomor 24 Tahun 1992 tentang Penataan Ruang (Lembaran Negara Tahun 1992 Nomor 115, Tambahan Lembaran Negara Nomor 3501);
2. Undang-Undang Nomor 32 Tahun 2004 tentang Pemerintahan Daerah (Lembaran Negara Tahun 2004 Nomor 125, Tambahan Lembaran Negara Nomor 4437);
3. Undang-Undang Nomor 17 Tahun 2008 tentang Pelayaran (Lembaran Negara Tahun 2008 Nomor 64, Tambahan Lembaran Negara Nomor 4849);
4. Peraturan Pemerintah Nomor 81 Tahun 2000 tentang Kenavigasi (Lembaran Negara Tahun 2000 Nomor 160, Tambahan Lembaran Negara Nomor 4001);
5. Peraturan Pemerintah Nomor 69 Tahun 2001 tentang Kepelabuhanan (Lembaran Negara Tahun 2001 Nomor 127, Tambahan Lembaran Negara Nomor 4145);
6. Peraturan Presiden Nomor 9 Tahun 2005 tentang Kedudukan, Tugas, Fungsi, Susunan Organisasi Dan Tata Kerja Kementerian Negara Republik Indonesia sebagaimana telah diubah terakhir dengan Peraturan Presiden Nomor 94 Tahun 2006;

MEMUTUSKAN:

Menetapkan:

PERATURAN MENTERI PERHUBUNGAN TENTANG RENCANA INDKU PELABUHAN KHASUS MINYAK DAN GAS BUMI PT. PERTAMINA (PERSERO) BALONGAN.

BAB I

KETENTUAN UMUM

Pasal 1

Dalam Peraturan ini, yang dimaksud dengan:

1. Pelabuhan Khusus adalah pelabuhan yang dikelola untuk kepentingan sendiri guna menunjang kegiatan tertentu.
2. Kepentingan sendiri adalah terbatac pada kegiatan lalu lintas kapal atau turun naik penumpang atau bongkar muat barang berupa bahan baku, hasil produksi dan peralatan penunjang produksi untuk kepentingan sendiri.

4. Rencana Tapak adalah proses lanjutan dari Rencana Induk Pelabuhan Khusus Minyak dan Gas Bumi PT. Pertamina (Persero) Balongan yang mencakup rancangan tata letak pelabuhan yang bersifat teknis dan konseptual, perletakan setiap fungsi lahan, perletakan masa bangunan dan rencana teknis dari setiap elemennya yang dilengkapi dengan konsepsi teknis dari bangunan, fasilitas dan prasarana lainnya.

5. Rencana Teknis Terinci adalah penjabaran secara rinci rencana tapak sebagaimana dasar kegiatan pembangunan Pelabuhan Khusus Minyak dan Gas Bumi PT. Pertamina (Persero) Balongan yang mencakup gambar dan spesifikasi teknis bangunan, fasilitas dan prasarana termasuk struktur bangunan dan bahan lainnya.

BAB II

PENYELENGGARAAN KEGIATAN

Pasal 2

(1) Untuk menyelenggarakan kegiatan kepelabuhanan pada Pelabuhan Khusus Minyak dan Gas Bumi PT. Pertamina (Persero) Balongan yang meliputi kegiatan jasa kepelabuhanan, pelaksana kegiatan pemerintahan dan kegiatan ekonomi lainnya serta pengembangan sesuai rencana induk dibutuhkan lahan daratan seluas 650 Ha dan areal perairan 971 Ha;

(2) Kebutuhan area perairan sebagaimana dimaksud ayat (1), terdiri dari:

a. area tempat berlabuh 147 Ha;
b. area untuk kapal mati 147 Ha;
c. area karantina 147 Ha;
d. area keadaan darurat 330 Ha;
e. area percobaan berlayar 200 Ha.
Pasal 3
Batas kebutuhan lahan daratan dan area perairan sebagaimana dimaksud dalam Pasal 2, digambarkan oleh garis yang menghubungkan titik-titik koordinat seperti tercantum dalam Dokumen Lampiran Peraturan ini.

BAB III
PEMBANGUNAN DAN PENGEMBANGAN FASILITAS

Pasal 4
(1) Rencana pembangunan fasilitas Pelabuhan Khusus Minyak dan Gas Bumi PT.Pertamina (Persero) Balongan untuk memenuhi kebutuhan pelayanan jasa kepelabuhanan dilakukan berdasarkan perkembangan angkutan laut, sebagai berikut:
 a. Tahap I, jangka pendek, dari tahun 2007 s.d 2011;
 b. Tahap II, jangka menengah, dari tahun 2012 s.d 2016;
 c. Tahap III, jangka panjang, dari tahun 2017 s.d 2031.
 dengan rincian sebagaimana tercantum dalam Dokumen sebagaimana terlampir pada Peraturan ini.

(2) Fasilitas pelabuhan yang direncanakan untuk dibangun dan dikembangkan sebagaimana dimaksud pada ayat (1), sebagaimana tercantum dalam Dokumen sebagaimana terlampir pada Peraturan ini.

Pasal 5
Rencana tapak dan rencana teknis terinci untuk pelaksanaan pembangunan dan pengembangan fasilitas pelabuhan disahkan oleh Direktur Jenderal.

Pasal 6
Pembangunan dan pengembangan fasilitas pelabuhan dilaksanakan dengan mempertimbangkan prioritas kebutuhan dan kemampuan pendanaan sesuai peraturan perundang-undangan yang berlaku.

Pasal 7
Pelaksanaan pembangunan dan pengembangan pelabuhan sebagaimana dimaksud dalam Pasal 4, wajib dilakukan dengan memperhatikan aspek lingkungan, didahului dengan studi lingkungan.
Pasal 9
Dalam hal penggunaan dan pemanfaatan lahan sebagaimana dimaksud dalam Pasal 8 terdapat area yang dikuasai pihak lain, pemanfaatannya harus didasarkan pada ketentuan peraturan perundang-undangan yang berlaku.

BAB V
PENUTUP

Pasal 10
Direktur Jenderal melakukan pengawasan terhadap pelaksanaan Peraturan ini.

Pasal 11
Peraturan ini mulai berlaku pada tanggal ditetapkan.

Ditetapkan di Jakarta
pada tanggal 3 Juni 2008

MENTERI PERHUBUNGAN

ttd

Ir. JUSMAN SYAFII DJAMAL

SALINAN Peraturan ini disampaikan kepada:
1. Ketua Badan Pemeriksa Keuangan;
2. Menteri Koordinator Bidang Perekonomian;
3. Menteri Dalam Negeri;
4. Menteri Energi dan Sumber Daya Mineral;
5. Menteri Negara BUMN;
6. Menteri Negara Perencanaan Pembangunan Nasional/Kepala BAPPENAS;
7. Direktur Jenderal Perhubungan Laut dan Kepala Badan Litbang Perhubungan;
8. Gubernur Jawa Barat;
9. Bupati Indramayu;
10. Kakanpel Indramayu;
11. Dirut PT.Pertamina (Persero);
12. GM.PT.Pertamina (Persero) Balongan.

Salinan sesuai dengan aslinya
Kepala Biro Hukum dan KSLN

HERU ARASEIKO, SH
Peminda TK I (W/b)
RENCANA INDUK PELABUHAN KHUSUS
MINYAK DAN GAS BUMI
PT. PERTAMINA (PERSERO) BALONGAN

EXECUTIVE SUMMARY

JUNI, 2008
DEPARTEMEN PERHUBUNGAN
REPUBLIK INDONESIA
Rencana Induk Pelabuhan Khusus Minyak dan Gas Bumi Balongan
Kabupaten Indramayu Propinsi Jawa Barat

1. Pendahuluan

1.1 Umum

1.2 Latar Belakang

Untuk memenuhi katantuan Pemerintah tersebut di atas dan sehubungan dengan rencana PT PERTAMINA (Persero) mengoperasikan tambahan 2 unit SPM (Single Point Mooring) yaitu satu unit berukuran 150.000 DWT dan satu unit berukuran 35.000 DWT untuk melayani kapal tanker pembawa BBM (bahan bakar minyak) terutama berupa premium, kerosene dan solar di Terminal Transit Utama Balongan, maka Pelabuhan Khusus Minyak dan Gas Bumi Pertamina Balongan perlu dibuatkan Master Plan-nya. Pelabuhan khusus minyak dan gas bumi ini berada di Laut Jawa, tepatnya di desa Balongan, Kecamatan Balongan, Kabupaten Indramayu, Provinsi Jawa Barat.

Pelabuhan tersebut selama ini dikenal sebagai Pelabuhan Khusus Minyak dan Gas Bumi Pertamina Unit Pengolahan VI Balongan yang dibangun dan dioperasikan oleh PT. PERTAMINA (Persero) untuk menunjang kegiatan pokoknya di bidang industri migas (minyak dan gas bumi), yakni untuk melayani pengapalan bahan baku dan hasil produksi migas (domestic & international) dari dan ke Balongan. Kegiatan pokok Pertamina dimaksud terdiri dari :

- Kegiatan eksplorasi dan produksi crude oil dan gas bumi yang dikelola oleh PT. Pertamina EP Region Jawa. Produksi minyak mentah yang dihasilkan bisa mencapai 25.000 barrel per hari. Pada tahun 2005, produksi JMCO (Jatibarang Mixed Crude Oil) yang diminat melalui Pelsus Balongan ini mencapai 1,2 juta LT.
- Kegiatan pengolahan crude oil menjadi BBM, LPG, propylene dan produk migas lainnya yang dikelola oleh PT. Pertamina Unit Pengolahan VI Balongan, yang mempunyai kapasitas pengolahan 125.000 barrel minyak mentah per hari. Selain memiliki kilang yang mengolah minyak mentah menjadi BBM, LPG, propylene dan lain-lain, Unit Pengolahan VI juga memiliki kilang yang disebut "Kilang Langit. Biru" yang mengolah naphtha menjadi HOMC 92 dan LPG. Seluruh bahan baku kilang berupa crude oil dan naphtha dibangkit melalui Pelsus Balongan.

- Kegiatan distribusi BBM dan produk lainnya (LPG, minyak bakar) dikeola oleh PT. Pertamina Unit Pemasaran III Depot Balongan dan Terminal Transit Utama Balongan. Kegiatan distribusi BBM dilakukan oleh Unit Pemasaran III melalui pipa untuk DKI Jakarta, dengan mobil tanki untuk konsumen di Indramayu, Majalengka, Cirebon, Kuningan dan sektormnya; dan melalui kapal tanker untuk konsumen di Semarang, Surabaya, Bali, NTB dan lain-lain.

2. KONDISI EKSIDING PELABUHAN KHUSUS BALONGAN

2.1 Lokasi dan Status Pelabuhan Balongan

Perairan Pelabuhan Khusus ini dibatasi oleh garis yang menghubungkan titik-titik koordinat di bawah ini:
- Koordinat A: 06° 18’ 00” LS / 108° 21’ 00” BT
- Koordinat B: 06° 12’ 00” LS / 108° 24’ 00” BT
- Koordinat C: 06° 15’ 00” LS / 108° 32’ 00” BT
- Koordinat D: 06° 24’ 00” LS / 108° 25’ 00” BT

Serta garis pantai yang menghubungkan titik A dan D.

Lay out Wilayah Perairan Pelabuhan Khusus Balongan eksisting dapat dilihat di Gambar 2.3

Sesuai dengan Keputusan Menteri Perhubungan Nomor KM.22 Tahun 1990 Tentang Penetapan Kelas Perairan Wajib Pandu, perairan wajib pandu Pelabuhan Balongan adalah meliputi perairan pelayaran yang dibatasi oleh garis hubung titik-titik:
Koordinat P: 06° 18’ 00" LS / 108° 21’ 00" BT
Koordinat Q: 06° 12’ 00" LS / 108° 24’ 00" BT
Koordinat R: 06° 15’ 00" LS / 108° 30’ 00" BT
Koordinat S: 06° 24’ 00" LS / 108° 25’ 00" BT

Serta garis pantai yang menghubungkan titik P dan S.
Tentu koordinat pandu mulai naik kapal untuk memandu adalah T: 06° 13’ 36" LS / 108° 27’ 16" BT.

Kriteria Pelabuhan khusus nasional/internasional, sesuai Keputusan Menteri Perhubungan Nomor KM.53 Tahun 2002, adalah sebagai berikut:
- bobot kapal yang dilayani 3.000 DWT atau lebih
- panjang dermaga 70 m atau lebih, konstruksi beton/baja
- kedalaman di depan dermaga ≥ 5.00 m LWS atau lebih
- melayani barang-barang berbahaya dan beracun (B3)
- melayani kegiatan pelayaran lintas provinsi dan internasional

Selanjutnya telah dilaksanakan verifikasi terhadap implementasi atas rancangan keamanan fasilitas pelabuhan yang disetujui dengan hasil memenuhi syarat dan Pelabuhan Khusus Minyak dan Gas Bumi Balongan telah memperoleh Perluasan Pemenahan Keamanan

Fasilitas Pelabuhan (Statement of Compliance of Port Facility) dari Direktorat Jenderal Perhubungan Laut No 02/G115 - D V tanggal 13 Januari 2005.

Gambar 2.1 Lokasi Pelabuhan

2.2 Fasilitas Pelabuhan

Tabel 2.1 Data Sarana Tambat Existing Pelus Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Spesifikasi</th>
<th>Nomor Dokumentasi</th>
<th>Kapasitas Penerimaan (TBT)</th>
<th>Bahan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPM 150.000</td>
<td>DWT UP-VI</td>
<td>06° 16’ 17.67’ S, 108° 27’ 17.22’ T</td>
<td>22</td>
<td>150.000</td>
</tr>
<tr>
<td>2</td>
<td>SPM 150.000</td>
<td>DWT UP-VI</td>
<td>06° 16’ 09.78’ S, 108° 25’ 41.14’ T</td>
<td>25</td>
<td>150.000</td>
</tr>
<tr>
<td>3</td>
<td>SPM 35.000</td>
<td>DWT UP-VI</td>
<td>06° 17’ 00.92’ S, 108° 29’ 34.42’ T</td>
<td>14,5</td>
<td>35.000</td>
</tr>
<tr>
<td>4</td>
<td>SPM 35.000</td>
<td>DWT UP-VI</td>
<td>06° 15’ 24.72’ S, 108° 28’ 02.88’ T</td>
<td>15</td>
<td>35.000</td>
</tr>
<tr>
<td>5</td>
<td>SPM 35.000</td>
<td>DWT UP-VI</td>
<td>06° 20’ 15.45’ S, 108° 26’ 57.29’ T</td>
<td>13</td>
<td>35.000</td>
</tr>
<tr>
<td>8</td>
<td>Demranga UP-VI</td>
<td>(4 pelampung)</td>
<td>06° 21’ 33.54’ S, 108° 25’ 20.03’ T</td>
<td>3</td>
<td>300</td>
</tr>
</tbody>
</table>
Tabel 2.2 Data Kapal Sarana Pelabuhan Di Pelisus Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Kapal</th>
<th>Jenis</th>
<th>Buatan</th>
<th>GT</th>
<th>HP</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TB BALONGAN I</td>
<td>TUG BOAT</td>
<td>1995</td>
<td>304</td>
<td>3000</td>
<td>PT Neagho Shipyard, Singapore</td>
</tr>
<tr>
<td>2</td>
<td>TB BALONGAN II</td>
<td>TUG BOAT</td>
<td>1995</td>
<td>304</td>
<td>3000</td>
<td>PT Dok Perkapalan Surabaya</td>
</tr>
<tr>
<td>3</td>
<td>TB OGAN</td>
<td>TUG BOAT</td>
<td>1975</td>
<td>141</td>
<td>1700</td>
<td>Robin Shipyard Pte Ltd, Singapore</td>
</tr>
<tr>
<td>4</td>
<td>TB UDAWA II</td>
<td>TUG BOAT</td>
<td>1981</td>
<td>133</td>
<td>1700</td>
<td>PT Adhi Guna Shipyard, Jakarta</td>
</tr>
<tr>
<td>5</td>
<td>WB MUNDU I</td>
<td>WORK BOAT</td>
<td>1972</td>
<td>43</td>
<td>115</td>
<td>Japan</td>
</tr>
<tr>
<td>6</td>
<td>PB SUKAREJA</td>
<td>PATROL BOAT</td>
<td>1996</td>
<td>15</td>
<td>300</td>
<td>PT Abhirama Handayana, Jakarta</td>
</tr>
<tr>
<td>7</td>
<td>PC DWIANGGA</td>
<td>FLOATING CRANE</td>
<td>1979</td>
<td>285</td>
<td></td>
<td>East Java Shipyard, Singapore</td>
</tr>
<tr>
<td>8</td>
<td>PHB I</td>
<td></td>
<td>1979</td>
<td>285</td>
<td></td>
<td>Asea Shipyard, Singapore</td>
</tr>
<tr>
<td>9</td>
<td>PHB II</td>
<td></td>
<td>1979</td>
<td>285</td>
<td></td>
<td>Asea Shipyard, Singapore</td>
</tr>
</tbody>
</table>

Tabel 2.3 Daftar Sarana Bantu Navigasi Pelayaran dan Tambat Pelabuhan Khusus UP-VI Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis IMM / SBNP</th>
<th>Koordinat</th>
<th>Warna</th>
<th>Lampu Navigasi</th>
<th>Kel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LIGHT BUOY (ZLB 066)</td>
<td>06° 13' 12.7" S / 106° 27' 37" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>2</td>
<td>SPM 150.000 DWT (Nava SBN 25,500 DWT)</td>
<td>06° 18' 17.6" S / 106° 27' 47.2" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>3</td>
<td>LIGHT BUOY (ZLB 210)</td>
<td>06° 17' 47.2" S / 106° 25' 17.4" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>4</td>
<td>SPM 35.000 DWT</td>
<td>06° 10' 09.8" S / 106° 27' 34.2" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>5</td>
<td>LIGHT BUOY (ZLB 274) (Nava SBN 17,500 DWT)</td>
<td>06° 18' 23.6" S / 106° 26' 50" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>6</td>
<td>SPM 17.500 DWT</td>
<td>06° 19' 15.0" S / 106° 27' 37" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>7</td>
<td>LIGHT BUOY (ZLB 246) (Anchor area LPC)</td>
<td>06° 19' 22.4" S / 106° 26' 44" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>8</td>
<td>CBM 6.500 DWT</td>
<td>06° 18' 13.5" S / 106° 24' 55.6" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>9</td>
<td>LIGHT BUOY (ZLB 246)</td>
<td>06° 18' 55.6" S / 106° 24' 25.7" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>10</td>
<td>JETY PROPELLENE</td>
<td>06° 22' 54.3" S / 106° 24' 23.2" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>11</td>
<td>ZCB 240 D1 (Air - Hijau Luar)</td>
<td>06° 22' 46.0" S / 106° 24' 27.4" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>12</td>
<td>ZCB 240 D2 (Air - Merah Luar)</td>
<td>06° 20' 12.7" S / 106° 24' 56.2" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>13</td>
<td>ZCB 240 D3 (Air - Hijau Dalaman)</td>
<td>06° 21' 06.8" S / 106° 24' 48.6" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>14</td>
<td>ZCB 240 D4 (Air - Merah Dalaman)</td>
<td>06° 20' 09.3" S / 106° 25' 15.0" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>15</td>
<td>ZWB 120 S1</td>
<td>06° 22' 49.2" S / 106° 24' 27.4" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>16</td>
<td>ZWB 120 S2</td>
<td>06° 22' 50.0" S / 106° 24' 30.5" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>17</td>
<td>ZWB 120 S3</td>
<td>06° 22' 50.2" S / 106° 24' 23.6" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>18</td>
<td>ZWB 120 S4</td>
<td>06° 22' 57.2" S / 106° 24' 28.1" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>19</td>
<td>POLE (Jung Jetty)</td>
<td>06° 22' 00" S / 106° 24' 24" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>20</td>
<td>POLE (Ceder Linu Propylene)</td>
<td>06° 23' 02.8" S / 106° 24' 33.2" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>21</td>
<td>POLE (Ceder Linu Propylene)</td>
<td>06° 23' 05.8" S / 106° 24' 11.1" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>22</td>
<td>JETY CARBO FELDIS</td>
<td>06° 22' 54.3" S / 106° 24' 23.2" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>23</td>
<td>BEACON HUMA</td>
<td>06° 21' 36.0" S / 106° 23' 22.0" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>24</td>
<td>BEACON MERAH</td>
<td>06° 21' 39.0" S / 106° 23' 22.0" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>25</td>
<td>BEACON TOWER</td>
<td>06° 21' 41.0" S / 106° 23' 17.0" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
<tr>
<td>26</td>
<td>LATTICE TOWER</td>
<td>06° 21' 38.0" S / 106° 23' 22.0" E</td>
<td>Hijau</td>
<td>Hijau</td>
<td>1 Set</td>
</tr>
</tbody>
</table>
Gambar 2.1 Rencana Tata Guna Lahan Pelabuhan Khusus Balongan
Gambar 2.3 Lay out Perairan Eksisting dan Wilayah Wajib Pandu disesuaikan dengan Rekomendasi Kepala Kantor Pelabuhan Indramayu
2.3 Tata Guna Perairan Saat Ini

Di dalam perairan kerja Pelabuhan Khusus Migas Balongan ini belum tersedia areal tempat berlabuh, areal untuk keadaan darurat, areal percoabaan berlayar, areal penempatan kapal mati, areal karantina dan kolam putar untuk tanker (kecuali untuk tanker propylene dan tanker LPG). Areal tempat berlabuh terletak pada daerah yang berjarak lebih dari 40 km dari perairan kerja pelabuhan.

3. KEGIATAN PELABUHAN KHSUS BALONGAN

3.1 Kegiatan Bongkar Muat

Tabel 3.1 Jenis Kargo yang Dibongkar dan Dimuat di Pelsus Migas Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Fasilitas Tamat</th>
<th>Muat (Kargo) – Tahun 2005</th>
<th>Muat (Kargo) – Tahun 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jetty – 7.000 DWT</td>
<td>LPG</td>
<td>LPG</td>
</tr>
<tr>
<td>2</td>
<td>SPM – 150.000 DWT</td>
<td>Naphtha, Minas (SLC)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>SPM – 35.000 DWT</td>
<td>Premium, Pertamax, HOMC</td>
<td>Naphtha, Minas (SLC)</td>
</tr>
<tr>
<td>4</td>
<td>SPM – 17.500 DWT</td>
<td>Premium, Pertamax, HOMC, Decant Oil</td>
<td>Premium, Pertamax, HOMC, Decant Oil</td>
</tr>
<tr>
<td>5</td>
<td>CBM – 6.500 DWT</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sumber: Perkapalan, UP-VI Balongan (dilolah)

Tabel 3.2 Bongkar Muat Kargo di Pelsus Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Kargo</th>
<th>Satuan</th>
<th>B/M 2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCO</td>
<td>Barrel</td>
<td>22,359,743</td>
<td>20,024,447</td>
<td>7,794,939</td>
</tr>
<tr>
<td>2</td>
<td>SLC</td>
<td>Barrel</td>
<td>21,696,930</td>
<td>21,299,274</td>
<td>7,661,020</td>
</tr>
<tr>
<td>3</td>
<td>NAPHTA</td>
<td>Barrel</td>
<td>72,142</td>
<td>74,797,707</td>
<td>4,794,139</td>
</tr>
<tr>
<td>4</td>
<td>JMCO</td>
<td>Barrel</td>
<td>6,111,478</td>
<td>6,209,472</td>
<td>1,863,519</td>
</tr>
<tr>
<td>5</td>
<td>DECANT OIL</td>
<td>Barrel</td>
<td>3,518,659</td>
<td>3,067,848</td>
<td>1,379,111</td>
</tr>
<tr>
<td>6</td>
<td>H/L OMC</td>
<td>Barrel</td>
<td>2,156,670</td>
<td>3,847,935</td>
<td>2,590,330</td>
</tr>
<tr>
<td>7</td>
<td>LPG</td>
<td>MT</td>
<td>155,171</td>
<td>85,348</td>
<td>34,605</td>
</tr>
<tr>
<td>8</td>
<td>IDF</td>
<td>MT</td>
<td>53,387</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>PREUM/PERTAMAX</td>
<td>MT</td>
<td>392,634</td>
<td>367,822</td>
<td>269,936</td>
</tr>
<tr>
<td>10</td>
<td>PROPYLENE</td>
<td>MT</td>
<td>7,997</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sumber: Perkapalan, UP-VI Balongan (dilolah)

Tabel 3.3 Bongkar Muat Kargo di Pelsus Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Tahun</th>
<th>Jetty (MT)</th>
<th>SPM 150.000 (Barrel)</th>
<th>SPM 50.000 (Barrel)</th>
<th>SPM 17.500 (Barrel)</th>
<th>CBM 6.500 (Barrel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2004</td>
<td>103,168</td>
<td>50,168,151</td>
<td>103,933</td>
<td>2,228,812</td>
<td>3,518,659</td>
</tr>
<tr>
<td>2</td>
<td>2005</td>
<td>85,346</td>
<td>48,264,277</td>
<td>79,890</td>
<td>10,803,59</td>
<td>287,932</td>
</tr>
<tr>
<td>3</td>
<td>2006</td>
<td>34,605</td>
<td>17,538,097</td>
<td>-</td>
<td>5,865,619</td>
<td>269,361</td>
</tr>
</tbody>
</table>

Sumber: Perkapalan, UP-VI Balongan (dilolah)

1 Jan-Mei (5 bulan)
3.2 Kinerja Bongkar Muat

Tabel 3.4 Kinerja Bongkar Muat Pelabuhan Khusus Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Sarana Tambat</th>
<th>Pipa Diameter</th>
<th>Tekanan Maks. kg/cm²</th>
<th>Kapasitas B/M</th>
<th>Kargo 2005-2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPM 150.000 DWT</td>
<td>36°</td>
<td>8</td>
<td>3,000</td>
<td>Minyak mentah Decant Oil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24°</td>
<td>7</td>
<td>1,200</td>
<td>SLC dan JMCO, Decant Oil</td>
</tr>
<tr>
<td>2</td>
<td>SPM 35.000 DWT</td>
<td>20°</td>
<td>4</td>
<td>600</td>
<td>Naphtha, HOMC, Premium Pertamax</td>
</tr>
<tr>
<td>3</td>
<td>SPM 17.500 DWT</td>
<td>16°</td>
<td>12</td>
<td>1000</td>
<td>Premium, Premix, Pertamax, HOMC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16°</td>
<td>15</td>
<td>500</td>
<td>Decant Oil</td>
</tr>
<tr>
<td>4</td>
<td>CBM 6.500 DWT</td>
<td>16°</td>
<td>4</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Jetty Propylene</td>
<td>--</td>
<td>--</td>
<td>80 MT/jam</td>
<td>LPG</td>
</tr>
</tbody>
</table>

Sumber: Laporan Tahunan Jasum UP VI Balongan (ditolah)

Tabel 3.5 Berth Occupancy Ratio (BOR) Rata-rata Pelabuhan Khusus Balongan, Tahun 2003 - 2006

<table>
<thead>
<tr>
<th>No</th>
<th>Sarana Tambat</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPM 150.000 DWT</td>
<td>51%</td>
<td>79%</td>
<td>75%</td>
<td>54%</td>
</tr>
<tr>
<td>2</td>
<td>SPM 35.000 DWT</td>
<td>11%</td>
<td>6%</td>
<td>4%</td>
<td>53%</td>
</tr>
<tr>
<td>3</td>
<td>SPM 17.500 DWT</td>
<td>15%</td>
<td>21%</td>
<td>20%</td>
<td>55%</td>
</tr>
<tr>
<td>4</td>
<td>CBM 6.500 DWT</td>
<td>8%</td>
<td>0%</td>
<td>0%</td>
<td>8%</td>
</tr>
<tr>
<td>5</td>
<td>Jetty Propylene</td>
<td>19%</td>
<td>25%</td>
<td>16%</td>
<td>14%</td>
</tr>
</tbody>
</table>

Sumber: Laporan Tahunan Jasum UP VI Balongan (ditolah)¹ Jan-Mei

3.3 Kunjungan Kapal (Ship Calls)

Tabel 3.6 Kunjungan Kapal di Pelsus Migas Balongan, Tahun 2004 - 2006

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JETTY</td>
<td>96</td>
<td>3,700</td>
<td>55</td>
<td>3,700</td>
<td>20</td>
<td>3,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SPM 150.000</td>
<td>66</td>
<td>93,000</td>
<td>92</td>
<td>97,000</td>
<td>31</td>
<td>97,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SPM 35.000</td>
<td>16</td>
<td>30,800</td>
<td>15</td>
<td>21,000</td>
<td>21</td>
<td>23,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SPM 17.500</td>
<td>49</td>
<td>23,000</td>
<td>41</td>
<td>23,000</td>
<td>38</td>
<td>22,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CBM 6.500</td>
<td>7</td>
<td>6,700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Ship calls</td>
<td>266</td>
<td>261</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata ship calls/bulan: 22

Sumber: Perkapalan, UP-VI Balongan (ditolah)¹ Jan-Mei

FT. DIAGRAM TRIPROPORSI
4. PROYEKSI ARUS BARANG (CARGO) DAN KUNJUNGAN KAPAL (SHIP CALLS)

4.1 Proyeksi邦kang Muat Barang (Cargo)

1)邦kang Muat Barang Melalui SPM yang Ada (UP-VI)

2)邦kang Muat Kargo melalui SPM Baru (UPms III)

Proyeksi邦kang muat kargo pada SPM 150.000 DWT UPms III selengkapnya dapat disajikan sebagai berikut:

PT. DIAGRAM TRIPROPSOISKI
Sebagian produk BBM yang dимпοr tersebut selanjutnya akan didistribusikan kembali (back loading) ke luar melalui Pelabuhan Balongan, dan diproyeksikan jumlah kargo produk BBM tersebut sebagai berikut:

Tabel 4.3 Proyeksi Bahan Bakar Minyak yang Akan Dimuat Kembali (back loading) Melalui SPM-35.000 DWT yang Baru (UPms III) di Pelabuhan Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Tahun</th>
<th>Kerosene & Solar (KL)</th>
<th>Barrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010</td>
<td>5,267,723</td>
<td>33,136,723</td>
</tr>
<tr>
<td>2</td>
<td>2011</td>
<td>5,556,590</td>
<td>34,767,697</td>
</tr>
<tr>
<td>3</td>
<td>2012</td>
<td>5,845,347</td>
<td>36,285,271</td>
</tr>
<tr>
<td>4</td>
<td>2013</td>
<td>6,134,294</td>
<td>37,803,024</td>
</tr>
<tr>
<td>5</td>
<td>2014</td>
<td>6,425,151</td>
<td>40,420,818</td>
</tr>
<tr>
<td>6</td>
<td>2015</td>
<td>6,712,008</td>
<td>43,236,662</td>
</tr>
<tr>
<td>7</td>
<td>2016</td>
<td>7,046,808</td>
<td>44,345,487</td>
</tr>
<tr>
<td>8</td>
<td>2017</td>
<td>7,358,390</td>
<td>45,557,058</td>
</tr>
<tr>
<td>9</td>
<td>2018</td>
<td>7,697,342</td>
<td>48,789,801</td>
</tr>
<tr>
<td>10</td>
<td>2019</td>
<td>8,154,784</td>
<td>51,137,965</td>
</tr>
<tr>
<td>11</td>
<td>2020</td>
<td>8,651,551</td>
<td>53,877,746</td>
</tr>
<tr>
<td>12</td>
<td>2022</td>
<td>9,452,694</td>
<td>59,490,365</td>
</tr>
<tr>
<td>13</td>
<td>2030</td>
<td>9,934,824</td>
<td>62,519,738</td>
</tr>
<tr>
<td>14</td>
<td>2031</td>
<td>9,934,824</td>
<td>62,519,738</td>
</tr>
</tbody>
</table>

4.2 Proyeksi Kunjungan Kapal (Ship Calls)

1) Proyeksi Kunjungan Kapal pada SPM yang Ada (UP-VI)

a) Rata-Rata Ukuran Kapal

Berdasarkan data-data kunjungan kapal pada tahun 2004 sampai dengan tahun 2006 maka diproyeksikan rata-rata ukuran kapal yang akan berkonjung ke Pelabuhan Balongan menurut fasilitas tambat UP-VI pada kurun waktu lima tahun yang akan datang dapat diasumsikan sebagai berikut:

Tabel 4.4 Asumsi Rata-rata Ukuran Kapal Berkonjung di Pelabuhan Balongan

<table>
<thead>
<tr>
<th>No</th>
<th>Jetty/SPM</th>
<th>DWT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jetty propylene</td>
<td>4,000</td>
</tr>
<tr>
<td>2</td>
<td>SPM 150.000</td>
<td>85,000</td>
</tr>
<tr>
<td>3</td>
<td>SPM 35.000</td>
<td>20,000</td>
</tr>
<tr>
<td>4</td>
<td>SPM 17.500</td>
<td>20,000</td>
</tr>
<tr>
<td>5</td>
<td>CBM 6.500</td>
<td>0.50</td>
</tr>
</tbody>
</table>

b) Volume Muatan Kapal

Dari sample data pada kunjungan kapal selama dua setengah tahun terakhir (2004 s/d Mei 2006) menunjukkan bahwa kapal yang berkonjung pada tambatan Jetty Propylene rata-rata jumlah muatannya berturut-turut 0,50 MT per DWT, 0,450
MT/DWT dan 0,50 MT/DWT. Sedangkan kapal tanker yang bermuatan 5,60 Barrel/DWT sampai dengan 5,90 Barrel/DWT.
Dengan mengambil asumsi angka rata-rata volume muatan kapal per DWT pada tahun 2004 s/d 2006 tersebut, maka dapat diperkirakan rata-rata volume angkutan kapal dua puluh lima tahun ke depan sebagai berikut.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPM 150.000</td>
<td>65.00</td>
<td>560.50</td>
<td>532.00</td>
<td>532.00</td>
<td>532.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SPM 35.000</td>
<td>23.00</td>
<td>135.70</td>
<td>128.60</td>
<td>128.60</td>
<td>128.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4SPM 17.500</td>
<td>23.00</td>
<td>135.70</td>
<td>128.60</td>
<td>128.60</td>
<td>128.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Jetty propylene</td>
<td>4.000</td>
<td>MT</td>
<td>2.000</td>
<td>2.000</td>
<td>2.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CBM 6.500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c) Proyeksi Jumlah Kunjungan Kapal
Berdasarkan proyeksi alokasi kargo menurut sarana tamban dan proyeksi ukuran kapal serta rata-rata volume muatannya, maka diperkirakan jumlah kunjungan kapal di Pelabuhan Khusus Migas Balongan pada kurun waktu yang akan datang

<table>
<thead>
<tr>
<th>Tabelan</th>
<th>Jetty/SPM</th>
<th>Kargo</th>
<th>Jumlah Kunjungan Kapal</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPM 150.000</td>
<td>B</td>
<td>Minyak mentah (DCC+SLC)</td>
<td>68</td>
</tr>
<tr>
<td>SPM 150.000</td>
<td>M</td>
<td>Minyak mentah (JMCO)</td>
<td>68</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>SPM 35.000</td>
<td>M</td>
<td>Naphta</td>
<td>68</td>
</tr>
<tr>
<td>SPM 35.000</td>
<td>M</td>
<td>HOMO 92</td>
<td>68</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>SPM 17.500</td>
<td>M</td>
<td>DECANOL</td>
<td>68</td>
</tr>
<tr>
<td>SPM 17.500</td>
<td>M</td>
<td>PREMIUM PTERTAMAX</td>
<td>68</td>
</tr>
<tr>
<td>Sub Total</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>CBM 6.500</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>JETTY PROP</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>TOTAL KUNJUNGAN KAPAL</td>
<td></td>
<td></td>
<td>68</td>
</tr>
</tbody>
</table>

2) Proyeksi Kunjungan Kapal pada SPM yang Baru (UPMs III)

a) SPM 150.000 DWT
Dengan asumsi ukuran kapal tanker yang akan mengangkut BBM kerosene dan solar eks impor dan dibongkar di SPM 150.000 UPMs III berukuran rata-rata 125.000 DWT dengan daya angkut rata-rata 831.000 Barrel, maka dapat diperkirakan jumlah kunjungan kapal pada SPM 150.000 DWT UPMs III sebagai berikut di bawah ini.

Tabel 4.7 Proyeksi Jumlah Kunjungan Kapal Pada SPM 150.000 DWT UPMs III

<table>
<thead>
<tr>
<th>Tahun</th>
<th>SHIP CALLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>58</td>
</tr>
<tr>
<td>2011</td>
<td>62</td>
</tr>
<tr>
<td>2012</td>
<td>65</td>
</tr>
<tr>
<td>2013</td>
<td>68</td>
</tr>
<tr>
<td>2014</td>
<td>72</td>
</tr>
<tr>
<td>2015</td>
<td>75</td>
</tr>
<tr>
<td>2016</td>
<td>79</td>
</tr>
<tr>
<td>2017</td>
<td>83</td>
</tr>
<tr>
<td>2018</td>
<td>87</td>
</tr>
<tr>
<td>2019</td>
<td>91</td>
</tr>
<tr>
<td>2020</td>
<td>96</td>
</tr>
<tr>
<td>2021</td>
<td>106</td>
</tr>
<tr>
<td>2030</td>
<td>111</td>
</tr>
<tr>
<td>2031</td>
<td>111</td>
</tr>
</tbody>
</table>

b) SPM 35.000 DWT
Dengan asumsi ukuran kapal tanker yang akan memuat BBM kerosene dan solar eks impor berukuran rata-rata 30.000 DWT dengan daya angkut rata-rata 199.000 Barrel, maka dapat diperkirakan jumlah kunjungan kapal pada SPM 35.000 DWT UPMs III sebagai berikut di bawah ini.

Tabel 4.8 Proyeksi Jumlah Kunjungan Kapal Pada SPM 35.000 DWT UPMs III

<table>
<thead>
<tr>
<th>Tahun</th>
<th>SHIP CALLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>167</td>
</tr>
<tr>
<td>2011</td>
<td>176</td>
</tr>
<tr>
<td>2012</td>
<td>185</td>
</tr>
<tr>
<td>2013</td>
<td>194</td>
</tr>
<tr>
<td>2014</td>
<td>203</td>
</tr>
<tr>
<td>2015</td>
<td>212</td>
</tr>
<tr>
<td>2016</td>
<td>223</td>
</tr>
<tr>
<td>2017</td>
<td>234</td>
</tr>
<tr>
<td>2018</td>
<td>246</td>
</tr>
<tr>
<td>2019</td>
<td>258</td>
</tr>
<tr>
<td>2020</td>
<td>271</td>
</tr>
<tr>
<td>2025</td>
<td>299</td>
</tr>
<tr>
<td>2030</td>
<td>314</td>
</tr>
<tr>
<td>2031</td>
<td>314</td>
</tr>
</tbody>
</table>
5. RENCANA INDUK PELABUHAN KHUSUS BALONGAN

5.1 Ukuran Kapal Rencana

Berdasarkan kapasitas sarana tambat yang tersedia, sebagai kapal rencana diambil ukuran kapal tanker terbesar yang dapat dialiyani pada masing-masing sarana tambat yang tersedia yaitu:

- Untuk SPM 150.000 DWT : tanker ukuran 150.000 DWT
- Untuk SPM 35.000 DWT : tanker ukuran 35.000 DWT
- Untuk CBM 6.500 DWT : tanker ukuran 6.500 DWT
- Untuk jetty propylene : tanker LPG ukuran 4.000 DWT

<table>
<thead>
<tr>
<th>NO</th>
<th>Ukuran Kapal</th>
<th>Length Overall</th>
<th>Breadth m</th>
<th>Fully Loaded</th>
<th>Draft m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.000 DWT</td>
<td>250</td>
<td>45</td>
<td>22.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35.000 DWT</td>
<td>200</td>
<td>29</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.500 DWT</td>
<td>115</td>
<td>17.50</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.000 DWT</td>
<td>100</td>
<td>15.00</td>
<td>6.00</td>
<td></td>
</tr>
</tbody>
</table>

Ukuran kapal rencana ini digunakan untuk menentukan kebutuhan pertanian.

5.2 Kebutuhan Fasilitas Pelabuhan

5.2.1 Fasilitas Maritim

Untuk mempertahankan agar nilai Berth Occupancy Ratio tidak melampaui 50 % maka perlu dibangun 2 unit SPM 35.000 DWT dan 1 unit SPM 150.000 DWT.

<p>| Tabel 5.3 Rencana Kebutuhan Fasilitas Pelabuhan Khusus Migas Balongan |</p>
<table>
<thead>
<tr>
<th>No</th>
<th>Fasilitas</th>
<th>Kapasitas max</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPM 150.000 DWT (UP VI)</td>
<td>150.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>2</td>
<td>SPM 35.000 DWT (UP VI)</td>
<td>35.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>3</td>
<td>SPM 35.000/17600 DWT (UP VI)</td>
<td>35.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>4</td>
<td>CBM 6.500 DWT (UP VI)</td>
<td>6.500 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>5</td>
<td>JETTY LPG/PROPYLENE (UP VI)</td>
<td>7.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>6</td>
<td>DERMAGA (UP VI)</td>
<td>300 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>7</td>
<td>SPM 150.000 DWT (UPms III)</td>
<td>150.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>8</td>
<td>SPM 35.000 DWT (UPms III)</td>
<td>35.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>9</td>
<td>SPM 35.000 DWT (UP VI)</td>
<td>35.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>10</td>
<td>SPM 250.000 DWT (UP VI)</td>
<td>250.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>11</td>
<td>SPM 35.000 DWT (UPms III)</td>
<td>35.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>12</td>
<td>SPM 150.000 DWT (UPms III)</td>
<td>150.000 DWT</td>
<td>Eksisting</td>
</tr>
<tr>
<td>13</td>
<td>ISLAND BERTH LPG/PROPYLENE (UP VI)</td>
<td>6.500 DWT</td>
<td>Eksisting</td>
</tr>
</tbody>
</table>
| 14 | FUEL BUNKER | 2.000 ton/bulan | *Untuk melayani kebutuhan Bahan Bakar Minyak (BBM) tanker
| 15 | FRESH WATER SUPPLY | 200 m³/hari | *Untuk melayani kebutuhan air tawar

Catatan: Khusus jetty propylene, muatan dalam MT dan kecepatan bongkar muat dalam MT per jam.
Gambar 5.1 Tahapan Pengembangan Pelabuhan Khusus Balongan (2006 – 2031)
5.3 Perkiraan Biaya Pengembangan

Tabel 5.6 Perkiraan Biaya Pengembangan Pelabuhan Khusus Minyak dan Gas Bumi Balongan

<table>
<thead>
<tr>
<th>No.</th>
<th>Uraian</th>
<th>Tahun</th>
<th>Satuan</th>
<th>Jumlah</th>
<th>Biaya (USD)</th>
<th>Hutang (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPM 35.000 DWT (UPms III)</td>
<td>2008</td>
<td>unit</td>
<td>1</td>
<td>7.500.000</td>
<td>7.500.000</td>
</tr>
<tr>
<td>2</td>
<td>Kapal Tunda 4.800 HP</td>
<td>2008</td>
<td>unit</td>
<td>1</td>
<td>4.800.000</td>
<td>4.800.000</td>
</tr>
<tr>
<td>3</td>
<td>Crew Boat 500 HP</td>
<td>2008</td>
<td>unit</td>
<td>1</td>
<td>300.000</td>
<td>300.000</td>
</tr>
<tr>
<td>4</td>
<td>Penggantian pipa diameter 38" untuk SPM 150.000 DWT (UP-V)</td>
<td>2008</td>
<td>ls</td>
<td>1</td>
<td>9.400.000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SBNP</td>
<td>2008</td>
<td>ls</td>
<td>1</td>
<td>150.000</td>
<td>150.000</td>
</tr>
<tr>
<td>6</td>
<td>Penggantian pipa diameter 20" untuk SPM 35.000 DWT (UP-V)</td>
<td>2008</td>
<td>ls</td>
<td>1</td>
<td>3.026.000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pembangunan Island Berth LPG / Propylene 6500 DWT</td>
<td>2008</td>
<td>unit</td>
<td>1</td>
<td>2.700.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jumlah Biaya Pengembangan Jangka Pendek =</td>
<td></td>
<td></td>
<td></td>
<td>28.478.000</td>
<td></td>
</tr>
</tbody>
</table>

B	Jangka Menengah (2012 - 2016):					
1	SPM 250.000 DWT*	2016	unit	1	18.000.000	18.000.000
2	SPM 35.000 DWT (UPms III)	2015	unit	1	7.500.000	7.500.000
	Jumlah Biaya Pengembangan Jangka Menengah =				25.500.000	

C	Jangka Panjang (2017 - 2031):					
1	SPM 150.000 DWT (UPms III)	2017	unit	1	15.350.000	15.350.000
2	Kapal Tunda 4.800 HP	2020	unit	1	4.800.000	4.800.000
3	Crew Boat 300 HP	2021	unit	1	300.000	300.000
4	Kapal Tunda 5.000 HP	2025	unit	1	3.026.000	3.026.000
	Jumlah Biaya Pengembangan Jangka Panjang =				23.450.000	
	Jumlah Biaya Keseluruhan =				77.426.000	

* = Rencana PT PERTAMINA (Persero)
** = Perkiraan Biaya Konsultan

5.4 Peran dan Fungsi Pelabuhan

Pasal 17 Keputusan Menteri Perhubungan No. 53 tahun 2002 tentang Tatakan Kepelabuhanan Nasional menetapkan hirarki dan peran pelabuhan khusus dalam 3 kategori yaitu:

a. Pelabuhan khusus nasional/internasional.
b. Pelabuhan khusus regional.
c. Pelabuhan khusus lokal.

Berdasarkan analisis kebutuhan area perairan Pelabuhan Khusus Migas Balongan, area yang tersedia sudah mencukupi sehingga area cadangan tidak dibutuhkan lagi.

Tahapan Pengembangan Pelabuhan Khusus Minyak dan Gas Bumi Balongan disajikan pada Gambar 5.1 dan Gambar 5.2.

5.2.2 Rencana Peruntukan Daratan Pelabuhan

Tidak ada kebutuhan pengembangan fasilitas pelabuhan di sisi daratan. Sebagian besar sisi daratan Pelabuhan Khusus Minyak dan Gas Bumi Balongan digunakan oleh Unit Pengolahan VI Balongan (area kilang), PT. PERTAMINA EP (Explorasi dan Produksi) Region Jawa dan Unit Pemasaran III (Terminal Transit Utama Balongan dan Depot Balongan). Luas total area daratan ini sekitar 650 Ha dan tidak ada rencana mengubah peruntukannya selama periode master plan.
6. EVALUASI EKONOMI DAN KEUANGAN

6.1. Evaluasi Ekonomi

Berbagai manfaat ekonomi apabila rencana pengembangan Pelabuhan Balongan ini dilaksanakan antara lain sebagai berikut:

1) Manfaat Ekonomi pada Tahap Konstruksi

a. Proyek akan membuka tambahan kesempatan kerja yang berarti berperan dalam menuruni pengangguran.

b. Membuka lapangan usaha bagi pengusaha Nasional yang akan bertindak sebagai pemasok bahan material yang dibutuhkan proyek maupun bertindak sebagai pemborong pekerjaan proyek.

c. Mendukung pengusaha swasta kecil/lembaga untuk membuka usaha melalui kebutuhan sehari-hari para pekerja proyek.

d. Terserapi dan hasil produksi Nasional oleh proyek berupa bahan-bahan bangunan serta mesin dan peralatan yang dibutuhkan selama pembangunan proyek, berarti membantu dana yang terdapat di pertimbangan ekonomi.

2) Manfaat Ekonomi pada Tahap Operasional

c. Timbulnya usaha iluman dengan adanya kegiatan penampungan dan distribusi Bahan Bakar minyak, atau timbulnya multiplier effect bagi perekonomian Nasional.

6.2. Evaluasi Keuangan

Rencana investasi yang akan dilakukan dalam rangka pengembangan Pelabuhan Khusus Migas Balongan adalah sebagai berikut:

Tabel 6.1 Perkirakan Biaya Investasi Menurut Tahap Pengembangan

<table>
<thead>
<tr>
<th>TAHUN</th>
<th>K. Pekerjaan</th>
<th>J. Pemilik</th>
<th>J. Pemakai</th>
<th>J. Pemasok</th>
<th>J. Penyedia</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>183.567.457</td>
<td>203.763.000</td>
<td>21.995.700</td>
<td>89.000.000</td>
<td>141.722.000</td>
<td>44.160.000</td>
</tr>
<tr>
<td>2021</td>
<td>203.763.000</td>
<td>21.995.700</td>
<td>89.000.000</td>
<td>141.722.000</td>
<td>44.160.000</td>
<td>2.780.000</td>
</tr>
<tr>
<td>2022</td>
<td>213.763.000</td>
<td>203.763.000</td>
<td>89.000.000</td>
<td>141.722.000</td>
<td>44.160.000</td>
<td>2.780.000</td>
</tr>
<tr>
<td>2023</td>
<td>223.763.000</td>
<td>21.995.700</td>
<td>89.000.000</td>
<td>141.722.000</td>
<td>44.160.000</td>
<td>2.780.000</td>
</tr>
<tr>
<td>2024</td>
<td>233.763.000</td>
<td>203.763.000</td>
<td>89.000.000</td>
<td>141.722.000</td>
<td>44.160.000</td>
<td>2.780.000</td>
</tr>
<tr>
<td>2025</td>
<td>243.763.000</td>
<td>21.995.700</td>
<td>89.000.000</td>
<td>141.722.000</td>
<td>44.160.000</td>
<td>2.780.000</td>
</tr>
</tbody>
</table>

Gambar 5.2 Jadwal Pelaksanaan Pengembangan Pelabuhan Khusus Minyak dan Gas Bumi Balongan (2007s/d 2031)
Proyeksi keuangan selama 25 tahun (2007 – 2031) telah dilakukan berdasarkan pada perkiraan penerimaan dan biaya operasional dan selanjutnya dievaluasi berdasarkan analisa rasio keuangan dan perhitungan Financial Internal Rate of Return (FIRR) sebagai berikut:

1) Rasio Keuangan
Rasio keuangan tahun 2007, 2011, 2016 dan 2031 adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Tabel 6.2 Working Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Ratio</td>
</tr>
<tr>
<td>2007</td>
</tr>
<tr>
<td>228%</td>
</tr>
</tbody>
</table>

Working Ratio diatas 100% menandakan bahwa Pelabuhan Khusus Balongan dari segi keuangan tidak mampu menutupi biaya operasionalnya secara mandiri (sekalipun working ratio selalu menurun tiap tahunnya), dengan perkataan lain setiap tahun Pelabuhan menderita rugi dan untuk itu memerlukan subsidi dari PT PERTamina untuk menutupi biaya operasionalnya.

Kedua ini disebabkan karena hanya pendapatan jasa pelayanan kapal saja yang diperhitungkan sebagai penerimaan pelabuhan.

Apabila jasa pelayanan barang (berupa jasa gunggama, bongkar dan muat minyak bumi dan hasil produksi ikutannya) di Pelabuhan Khusus Balongan diperhitungkan sebagai penerimaan Pelabuhan sebagaimana tarif yang berlaku di pelabuhan umum lainnya, kemungkinan besar biaya-biaya operasional pelabuhan akan tertutup dan bahkan mungkin juga Pelabuhan dapat memperoleh laba usaha setiap tahunnya.

2) Financial Internal Rate of Return (FIRR) & B/C Ratio
Secara financial hasil perhitungan FIRR adalah – 19.53% yang berarti berada di bawah tingkat bunga modal yang saat ini berkisar 15%/tahun. hasil perhitungan B/C ratio sebesar 0.3647 yang berarti lebih kecil dari angka 1 (satu). maka dapat disimpulkan bahwa investasi yang dilakukan pada Pelabuhan Khusus Balongan adalah tidak layak ditinjau dari aspek keuangan.

Lain halnya bila jasa pelayanan barang diperhitungkan dalam proyeksi keuangan sebagai pendapatan pelabuhan, dapat diduga bahwa angka FIRR yang dicapai positif dengan B/C Ratio sama dengan atau di atas angka 1 (satu).

Walaupun nilai FIRR dan B/C Ratio tidak memenuhi syarat kelayakan financial, namun hal ini tidak menjadi kendala karena seluruh fasilitas Pelabuhan Khusus ini dibayai sendiri (dalam arti dibangun, dawaiet/dipelihara. dan dioperasikan) oleh PT.

7. TINJAUAN MASALAH LINGKUNGAN
7.1. Studi Lingkungan yang Pernah Dilaksanakan
2) Addendum Studi ANDAL. RKL. dan RPL EXOR-1 untuk Single Point Mooring (Berdasarkan Peraturan Pemerintah Nomor 51 Thun 1993 tentang Analisis Mengenai Dampak Lingkungan).

7.2. Rona Lingkungan Hidup
7.2.1. Iklim
Suhu rata-rata adalah 28,23° C, Sedangkan curah hujan rata-rata sekitar 1,800 mm per tahun. Kecepatan angin umumnya antara 1-4 m/detik, tetapi dapat terjadi angin dengan kecepatan sampai dengan 12.5 m/detik (dengan frekuensi yang sangat rendah).

7.2.2. Kualitas Udara dan kebisingan
Secara umum kualitas udara masih dibawah ambang baku mutu udara berdasarkan Peraturan Pemerintah No 41 tahun 1999 dan SK Gubernur Jawa Barat Nomor 660.31/SK/694-BKPM/82. Tingkat kebisingan umumnya di bawah ambang batas (55 dBA), namun bisa terjadi tingkat kebisingan yang melebihi ambang batas, yang diatasi dengan kegiatan transportasi.
7.2.3. Kualitas Air

Penguji kualitas air laut di stadi AndaI terdahulu menunjukkan bahwa kualitas air laut umumnya baik. Namun tercatat sampel dengan kandungan Zn dan Pb yang melampaui ambang batas.

Kualitas air tanah dari sumur pendukung menunjukkan beberapa parameter fisik dan kimia terlampau yaitu kandungan zat terlarut (TDS), kesadahan (CaCO₃) dan kandungan ion Chlorida yang kemungkinan besar berasal dari air laut. Juga ditimbulkan kandungan diterjen (di bawah ambang batas) yang menunjukkan adanya kegiatan manusia.

7.3. Lingkungan dalam Rangka Pengembangan Jangka Panjang

7.3.1. Kegiatan Konstruksi Selama Periode Master Plan

Selama periode Master Plan (2007-2031) terdapat kegiatan konstruksi yang dapat mempengaruhi mutu lingkungan hidup, yaitu:

- Pembangunan 2 (dua) SPM 35.000 DWT, 1 (satu) unit SPM 150.000 DWT, dan 1 (satu) unit SPM 250.000 DWT.
- Penggantian pipa bawah laut dan pipa bawah tanah.

7.3.2. Penanganan Dampak Lingkungan

Untuk mengurangi dampak lingkungan pada tahap konstruksi, perlu diambil tindakan pengelolaan sebagai berikut:

a. Menggunakan kendaraan dan alat berat yang telah lulus uji emisi.

b. Membatasi kegiatan mobilisasi peralatan hanya pada siang hari.

c. Melakukan penyiaran pada jalan yang dilalui kendaraan proyek.

d. Melakukan pengaturan lalu lintas untuk mencegah kemacetan, dan melakukan pemasangan rambu-rambu peringatan untuk mencegah terjadinya kecelakaan.

e. Melakukan penyiiran pada pelaksanaan penggalian dan penimbunan di darat.

f. Penggalian pipa bawah laut dilakukan dengan environmental dredger seperti cutter suction dredger atau trailing suction hopper dredger untuk mengurangi kekeruhan dan gebaran sedimen suspensi.

g. Pengaturan lalu-lintas perairan yang terkoordinasi oleh Kakanpel setempat.

h. Pemasangan rambu-rambu laut yang memadai sesuai SNI 10-4837-1998 di lokasi pekerjaan SPM dan jalur pipa.

i. Agar air ballast tidak mencemari perairan, maka disyaratkan adanya pemisahan air ballast dan ruang BBM di dalam kapal tanker sesuai dengan rekomendasi IMO, GEF dan UNDP.

j. Agar air uji hidrostatik tidak mencemari lingkungan, maka harus digunakan corrosion inhibitor dari jenis yang tidak berbahaya seperti blacksmith O-3670R dengan konsentrasi di bawah 500 ppm.

k. Melaksanakan komunikasi yang baik dengan penduduk setempat, baik melalui tokoh formal maupun tokoh informal untuk mengurangi hingga minimal ketidakpuasan/penolakan penduduk lokal terhadap aktivitas proyek.

MENTERI PERHUBUNGAN
Ttd
Ir. JUSMAN SYAFII DJAMAL